Discussion of "Monetary Policy in a Small Open Economy with Multiple Monetary Assets" by Van H. Nguyen

Sahil Ravgotra

DSGE Modelling for Emerging Open Economies

May 18, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Presents a two-country model

 $\longrightarrow\,$ with Banking sector that receive deposits from and make loans to households

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Presents a two-country model

 \longrightarrow with Banking sector that receive deposits from and make loans to households

 Constructs and compares the behavior of different measures of monetary aggregates

 \longrightarrow to look at the impact of openness on the stability of macro variables

Presents a two-country model

 \longrightarrow with Banking sector that receive deposits from and make loans to households

 Constructs and compares the behavior of different measures of monetary aggregates

 \longrightarrow to look at the impact of openness on the stability of macro variables

Three measures of money supply:

$$\longrightarrow$$
 Simple-sum: $SM_t = Ca_t + D_t$

$$\longrightarrow$$
 Monetary Base: $MB_t = A_t = Ca_t + \tau D_t$

$$\longrightarrow \text{ Divisia: } s_t^{Ca} = \frac{u_t^{Ca}C_{at}}{u_t^{Ca}C_{at}+u_t^D D_t}, \ s_t^D = \frac{u_t^{D}D_t}{u_t^{Ca}C_{at}+u_t^D D_t}$$

Presents a two-country model

- \longrightarrow with Banking sector that receive deposits from and make loans to households
- Constructs and compares the behavior of different measures of monetary aggregates

 \longrightarrow to look at the impact of openness on the stability of macro variables

Three measures of money supply:

$$\rightarrow$$
 Simple-sum: $SM_t = Ca_t + D_t$

$$\longrightarrow$$
 Monetary Base: $MB_t = A_t = Ca_t + \tau D_t$

$$\longrightarrow \text{ Divisia: } s_t^{Ca} = \frac{u_t^{Ca}Ca_t}{u_t^{Ca}Ca_t + u_t^D D_t}, \ s_t^D = \frac{u_t^{D}D_t}{u_t^{Ca}Ca_t + u_t^D D_t}$$

Implications:

- \longrightarrow Divisia measure is strictly better than simple-sum measure and monetary base in tackling the movement of money
- \longrightarrow Openness has an inverse relation with home-bias in consumption, on the volatility of macro variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

The model closely follows Faia and Monacelli (2008)

(ロ)、(型)、(E)、(E)、 E) の(()

The model closely follows Faia and Monacelli (2008)

$$C_{H,t} = \left(\frac{1}{n}\right)^{\frac{1}{\epsilon}} \left(\int_0^n C_{H,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(1)

$$C_{F,t} = \left(\frac{1}{1-n}\right)^{\frac{1}{\epsilon}} \left(\int_{1}^{n} C_{F,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(2)

(ロ)、(型)、(E)、(E)、 E) の(()

The model closely follows Faia and Monacelli (2008)

$$C_{H,t} = \left(\frac{1}{n}\right)^{\frac{1}{\epsilon}} \left(\int_0^n C_{H,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(1)

$$C_{F,t} = \left(\frac{1}{1-n}\right)^{\frac{1}{\epsilon}} \left(\int_{1}^{n} C_{F,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(2)

(ロ)、(型)、(E)、(E)、 E) の(()

• If $n \rightarrow 0$, it is not clear how (1) survives.

The model closely follows Faia and Monacelli (2008)

$$C_{H,t} = \left(\frac{1}{n}\right)^{\frac{1}{\epsilon}} \left(\int_0^n C_{H,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(1)

$$C_{F,t} = \left(\frac{1}{1-n}\right)^{\frac{1}{\epsilon}} \left(\int_{1}^{n} C_{F,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(2)

(ロ)、(型)、(E)、(E)、 E) の(()

- If $n \rightarrow 0$, it is not clear how (1) survives.
- Much easier to define all variables in per capita terms, and then multiply by n whenever aggregates are needed.

The model closely follows Faia and Monacelli (2008)

$$C_{H,t} = \left(\frac{1}{n}\right)^{\frac{1}{\epsilon}} \left(\int_0^n C_{H,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(1)

$$C_{F,t} = \left(\frac{1}{1-n}\right)^{\frac{1}{\epsilon}} \left(\int_{1}^{n} C_{F,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(2)

- If $n \rightarrow 0$, it is not clear how (1) survives.
- Much easier to define all variables in per capita terms, and then multiply by n whenever aggregates are needed.

The consumption basket is:

$$C_{t} = \left[(1 - \gamma)^{\frac{1}{\eta}} C_{H,t}^{\frac{\eta-1}{\eta}} + \gamma^{\frac{1}{\eta}} C_{F,t}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$
(3)

 \mathbf{n}

The model closely follows Faia and Monacelli (2008)

$$C_{H,t} = \left(\frac{1}{n}\right)^{\frac{1}{\epsilon}} \left(\int_0^n C_{H,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(1)

$$C_{F,t} = \left(\frac{1}{1-n}\right)^{\frac{1}{\epsilon}} \left(\int_{1}^{n} C_{F,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(2)

- If $n \rightarrow 0$, it is not clear how (1) survives.
- Much easier to define all variables in per capita terms, and then multiply by n whenever aggregates are needed.

The consumption basket is:

$$C_{t} = \left[(1 - \gamma)^{\frac{1}{\eta}} C_{H,t}^{\frac{\eta-1}{\eta}} + \gamma^{\frac{1}{\eta}} C_{F,t}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$
(3)

 \mathbf{n}

 γ , weight of domestic goods in the consumption bundle, is not used ($\alpha = \gamma$).

The model closely follows Faia and Monacelli (2008)

$$C_{H,t} = \left(\frac{1}{n}\right)^{\frac{1}{\epsilon}} \left(\int_0^n C_{H,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(1)

$$C_{F,t} = \left(\frac{1}{1-n}\right)^{\frac{1}{\epsilon}} \left(\int_{1}^{n} C_{F,t}(j)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$
(2)

- If $n \rightarrow 0$, it is not clear how (1) survives.
- Much easier to define all variables in per capita terms, and then multiply by n whenever aggregates are needed.

The consumption basket is:

$$C_{t} = \left[(1 - \gamma)^{\frac{1}{\eta}} C_{H,t}^{\frac{\eta-1}{\eta}} + \gamma^{\frac{1}{\eta}} C_{F,t}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$
(3)

 \mathbf{n}

 \mathbf{n}

 γ , weight of domestic goods in the consumption bundle, is not used ($\alpha = \gamma$).

$$C_{t} = \left[(1-\alpha)^{\frac{1}{\eta}} C_{H,t}^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} C_{F,t}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$
(4)

The U_t considered is:

$$U_t = \ln C_t - \psi_N \frac{N_t^{1+\xi}}{1+\xi} + \psi_M \ln\left(\frac{M_t}{P_t}\right)$$
(5)

where utility is separable in C_t and M_t .

The U_t considered is:

$$U_t = \ln C_t - \psi_N \frac{N_t^{1+\xi}}{1+\xi} + \psi_M \ln\left(\frac{M_t}{P_t}\right)$$
(5)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

where utility is separable in C_t and M_t .

Consider, instead, the non-separable utility:

$$U_t = \frac{1}{1 - \sigma} \left[C_t^{1 - \chi} + \psi_M \left(\frac{M_t}{P_t} \right)^{1 - \chi} \right]^{\frac{1 - \sigma}{1 - \chi}} - \psi_N \frac{N_t^{1 + \xi}}{1 + \xi}$$
(6)

where σ is the inverse of IES between bundles and χ is the inverse of IES between consumption and real balances.

• $\sigma = \chi$ gives back (5)

The U_t considered is:

$$U_t = \ln C_t - \psi_N \frac{N_t^{1+\xi}}{1+\xi} + \psi_M \ln\left(\frac{M_t}{P_t}\right)$$
(5)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

where utility is separable in C_t and M_t .

Consider, instead, the non-separable utility:

$$U_t = \frac{1}{1 - \sigma} \left[C_t^{1 - \chi} + \psi_M \left(\frac{M_t}{P_t} \right)^{1 - \chi} \right]^{\frac{1 - \sigma}{1 - \chi}} - \psi_N \frac{N_t^{1 + \xi}}{1 + \xi}$$
(6)

where σ is the inverse of IES between bundles and χ is the inverse of IES between consumption and real balances.

•
$$\sigma = \chi$$
 gives back (5)

 $\label{eq:stars} \bullet \ \sigma > \chi: \ \text{consumption and real balances are complements} \\ \longrightarrow \ \text{complementarity helps fit the response of velocity to interest rate in the data}$

The U_t considered is:

$$U_t = \ln C_t - \psi_N \frac{N_t^{1+\xi}}{1+\xi} + \psi_M \ln\left(\frac{M_t}{P_t}\right)$$
(5)

where utility is separable in C_t and M_t .

Consider, instead, the non-separable utility:

$$U_t = \frac{1}{1 - \sigma} \left[C_t^{1 - \chi} + \psi_M \left(\frac{M_t}{P_t} \right)^{1 - \chi} \right]^{\frac{1 - \sigma}{1 - \chi}} - \psi_N \frac{N_t^{1 + \xi}}{1 + \xi}$$
(6)

where σ is the inverse of IES between bundles and χ is the inverse of IES between consumption and real balances.

• $\sigma = \chi$ gives back (5)

• $\sigma > \chi$: consumption and real balances are compliments

- \longrightarrow complementarity helps fit the response of velocity to interest rate in the data
- \longrightarrow estimates of χ are lower than conventional numbers for σ .

An alternate money supply rule

Piazzesi, Rogers, and Schneider (2022) considers the money supply rule

$$\frac{D_t}{P_t} = D_t^r + \mu \left(\frac{D_{t-1}}{P_t} - D_t^r\right) \tag{7}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

where D_t is money supply, P_t is the price level, $D_t^r > 0$ is the desired path of supply and $\mu < 1$.

An alternate money supply rule

Piazzesi, Rogers, and Schneider (2022) considers the money supply rule

$$\frac{D_t}{P_t} = D_t^r + \mu \left(\frac{D_{t-1}}{P_t} - D_t^r\right) \tag{7}$$

where D_t is money supply, P_t is the price level, $D_t^r > 0$ is the desired path of supply and $\mu < 1$.

 \longrightarrow If $\mu = 0$, the government simply commits to a path for real balances

An alternate money supply rule

Piazzesi, Rogers, and Schneider (2022) considers the money supply rule

$$\frac{D_t}{P_t} = D_t^r + \mu \left(\frac{D_{t-1}}{P_t} - D_t^r\right) \tag{7}$$

where D_t is money supply, P_t is the price level, $D_t^r > 0$ is the desired path of supply and $\mu < 1$.

- $\longrightarrow\,$ If $\mu=$ 0, the government simply commits to a path for real balances
- \rightarrow If $\mu > 0$, it captures the short term nominal rigidity in the money supply: while inflation can temporarily erode the supply of real balances, the government gradually steers that supply towards its desired path $D_t^r > 0$.

Robustness Checks

 $\begin{tabular}{ll} \hline & \beta = 0.98525 \\ & \longrightarrow \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} & \beta = 0.98525 \\ & \longrightarrow \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Robustness Checks

 $\beta = 0.98525$ $\longrightarrow \text{ why not } \beta = 0.99?$

Monetary policy rule in the paper:

$$r_{t} = (1 - \rho_{r})r + \rho_{r}r_{t-1} + (1 - \rho_{r})\rho_{\pi}(\pi_{H,t} - \pi_{H}) + \epsilon_{r,t}$$
(8)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Robustness Checks

 $\label{eq:basic_basic$

Monetary policy rule in the paper:

$$r_{t} = (1 - \rho_{r})r + \rho_{r}r_{t-1} + (1 - \rho_{r})\rho_{\pi}(\pi_{H,t} - \pi_{H}) + \epsilon_{r,t}$$
(8)

How about:

$$r_{t} = (1 - \rho_{r})r + \rho_{r}r_{t-1} + (1 - \rho_{r})(\rho_{\pi}\hat{\pi}_{H,t} + \rho_{y}\hat{y}_{t}) + \epsilon_{r,t}$$
(9)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 Divisa quantity aggregate tracks almost perfectly the movement of the true monetary aggregate; and

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

- Divisa quantity aggregate tracks almost perfectly the movement of the true monetary aggregate; and
- nominal interest rate and domestic inflation fluctuate more as the economy is more open, while the growth rate of exchange rate and true money become more stable.

- Divisa quantity aggregate tracks almost perfectly the movement of the true monetary aggregate; and
- nominal interest rate and domestic inflation fluctuate more as the economy is more open, while the growth rate of exchange rate and true money become more stable.

- \longrightarrow limited discussion
- \longrightarrow show analytically and provide some intuition

- Divisa quantity aggregate tracks almost perfectly the movement of the true monetary aggregate; and
- nominal interest rate and domestic inflation fluctuate more as the economy is more open, while the growth rate of exchange rate and true money become more stable.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- \longrightarrow limited discussion
- \longrightarrow show analytically and provide some intuition
- The "conclusion" (or the paper) does not say anything about:
 - \longrightarrow why adding Divisia measure into the DSGE model is making a difference;
 - \longrightarrow how (and why) openness affects the volatility of macro variables

- Divisa quantity aggregate tracks almost perfectly the movement of the true monetary aggregate; and
- nominal interest rate and domestic inflation fluctuate more as the economy is more open, while the growth rate of exchange rate and true money become more stable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- \longrightarrow limited discussion
- \longrightarrow show analytically and provide some intuition
- The "conclusion" (or the paper) does not say anything about:
 - \longrightarrow why adding Divisia measure into the DSGE model is making a difference;
 - \longrightarrow how (and why) openness affects the volatility of macro variables
- 'I' and 'We' used alternatively throughout the text

Conclusion

- \longrightarrow A great paper!
- \longrightarrow Lots of food for thought;
- \longrightarrow Still some way to go in modeling the money supply in full;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 \longrightarrow Observance is required in presenting the results.

Thank you!

References

FAIA, E., AND T. MONACELLI (2008): "Optimal monetary policy in a small open economy with home bias," *Journal of Money, credit and Banking*, 40(4), 721–750.
PIAZZESI, M., C. ROGERS, AND M. SCHNEIDER (2022): "Money and banking in a New Keynesian model," *Standford WP*.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる